Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations November DESIGN OF MACHINE ELEMENTS-I

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five	Units 5 x	x 12 = 60 Marks
------------------	-----------	------------------

UNIT-I

1	How do you classify the machine design? Explain. 7				
	b Write the bending stress relation and draw the diagram.	5M			
	OR				
2	a Explain the general design procedure while designing a machine element.	6M			
	b Draw the stress –strain diagram for mild steel. Explain.	6M			
	UNIT-II				
3	a A machine component is subjected to a fluctuating stress that varies from 40				
	to 100 N/mm ² . The corrected endurance limit of the machine component				
	N/mm^2 . The ultimate stress and yield point stress of the material are 600 \pm	and 400			
	N/mm ² respectively. Find the factor of safety using:				
	(i) Gerber formula. (ii) Solderberg line. (iii) Goodman line.				
	b Define fatigue stress and variable fatigue stress.	5M			
OR					
4	a Determine the diameter of a circular rod made of ductile material with a strength (complete reversal), $\sigma_e=265$ MPa and tensile yield strength of 35	U U			
	The member is subjected to a varying axial load from W $_{min}$ =-300 KN to	$W_{max} =$			
	700 KN and has a stress concentration factor is 1.8. Use factor of safety as 2.				
	b Define Notch sensitivity and endurance limit.	4M			
UNIT-III					
5	a Write advantages and disadvantages of welded joint over riveted joints.	6M			
	b What are the assumptions made in the design of welded joint?	6M			
	OR				
6	a A plate 100 mm wide and 10 mm thick is to be welded to another plate by n				
	double parallel fillets. The plates are subjected to a static load of 80 kN. I				
	length of weld if the permissible shear stress in the weld does not exceed 55				
	b What are the different types of failure of riveted joints?	5M			
	UNIT-IV				
7	a Draw neat sketch of knuckle joint and its application.	8M			
	b Define torsional rigidity and lateral rigidity	4M			
OR					
8	a A solid shaft is transmitting 1 MW at 240 r.p.m. Determine the diameter of t				
	if the maximum torque transmitted exceeds the mean torque by 20%. T	ake the			
	maximum allowable shear stress as 60 MPa.				
	b What type of stresses is induced in shafts?	4 M			

R16

Q.P. Code: 16ME314

UNIT-V

R16

- 9 a Draw neat sketch of sunk and saddle key and its application.
 6M
 b Draw neat sketch of bushed pin type flange coupling and its application.
 6M
 6M
 6M
 10 Design and draw a cast iron flange coupling for a mild steel shaft transmitting90 kW at
- 10 Design and draw a cast iron flange coupling for a mild steel shaft transmitting90 kW at 250 r.p.m. The allowable shear stress in the shaft is 40 MPa and the angle of twist is not to exceed 1° in a length of 20 diameters. The allowable shear stress in the coupling bolts is 30 MPa.

*** END ***